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This paper investigates students’ conceptual understanding of equivalent fractions by 

examining their responses to questions using symbolic and pictorial representations. Two 

hundred and thirteen students in Years 3 to 5 from three Sydney primary schools were 

administered a general mathematics achievement test and a fraction assessment. Five 

questions from this fraction assessment instrument were analysed. The different types of 

knowledge used to answer each question were examined and common misconceptions 

identified. The responses of students with limited general mathematics achievement were 

compared to those of their more competent peers. The differences that emerged between the 

two groups in their conceptual understanding of equivalent fractions, were highlighted. 

The development of conceptual understanding involves seeing the connections between 

concepts and procedures, and being able to apply mathematical principles in a variety of 

contexts. It is a central focus of the NSW Mathematics curriculum (Board of Studies NSW 

(BOS NSW), 2002). Considering the difficulties experienced by students in mastering 

equivalent fractions and the many misconceptions they hold (e.g., Gould, 2005a, 2005b; 

National Research Council (NRC), 2001; Pearn, Stephens, & Lewis, 2003), identifying the 

nature of the differences in conceptual understanding between students of varying levels of 

general mathematical proficiency provides a mechanism to inform the teaching of this 

particular concept (NRC, 2001). 

As part of a larger study which examined students’ conceptual understanding of 

equivalent fractions, an Assessment of Fraction Understanding (AFU) instrument was 

developed. The pencil and paper test contained 34 questions that were used to measure 

students’ conceptual understanding, their ability to solve routine problems and to adapt 

their understanding to non-routine problems (NRC, 2001; Shannon, 1999). Three schools 

participated in this phase of the study. All students were administered the AFU instrument 

and some students also participated in semi-structured interviews.  

This paper focuses specifically on five fraction questions from the AFU and their 

diagnostic potential in identifying students’ misconceptions. Comparisons between the 

responses of students with naïve and with more advanced mathematical understanding 

assist in defining the progressive learning sequences followed by students to master and 

understand equivalent fractions. 

Theoretical Perspective 

Systems of Knowledge 

Mathematics is a reasoning activity that involves observing, representing and 

investigating relationships in the social and physical world, or between mathematical 

concepts themselves (BOS NSW, 2002). A mathematical concept is not a single isolated 

idea but one idea in a structured system of knowledge or schemata (Anderson, 2000; Lesh, 

Landau, & Hamilton, 1983). Information-processing models of cognitive development 

suggest that within these structured systems of knowledge, information stored in memory 

can be categorised into declarative and procedural knowledge (Anderson, 2000).  
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Declarative knowledge is knowledge of specific facts and ideas (Anderson, 2000). 

Mathematical definitions of procedural knowledge assume a foundation of declarative 

knowledge: “a familiarity with the individual symbols of the system and with the syntactic 

conventions for acceptable configurations of symbols” (Hiebert & Lefevre, 1986, p. 7). 

Procedural knowledge also incorporates the awareness of how to approach a task and its 

related steps or algorithms (Anderson, 2000). 

Conceptual understanding in mathematics develops when students “see the connections 

among concepts and procedures and can give arguments to explain why some facts are 

consequences of others” (NRC, 2001, p. 119). Facts are no longer isolated but become 

organised in coherent structures based on relationships, generalisations and patterns, 

Conceptual understanding has also been described as “conceptual knowledge” (Anderson, 

2000; Rittle-Johnson, Siegler, & Alibali, 2001) and “relational understanding” (Skemp, 

1986). Rittle-Johnson et al. (2001) found that developing students’ procedural knowledge 

had positive effects on their conceptual understanding, and conceptual understanding was a 

prerequisite for the students’ ability to generate and select appropriate procedures.  

Thus, conceptual understanding is intertwined with procedural knowledge. This makes 

the isolated study of either difficult, requiring more than the determination of the 

correctness/incorrectness of a student’s answer. It requires further investigation into the 

response, which can provide valuable insight into the thinking (Gould, 2005a; 2005b).  

Fraction Knowledge 

A common fraction (fraction) is often described as the ratio or quotient of two whole 

numbers, a and b, expressed in symbolic form a
b

, where b is not zero (BOS NSW, 2002). It 

is a symbol that has meaning and can be interpreted and manipulated. The fraction 

schemata includes five interconnected, yet distinct interpretations (Lamon, 2001), as 

shown in Table 1. Using these interpretations, one can explore the various characteristics 

and manipulations of fractions (such as proper and improper fractions, mixed numerals, 

fraction equivalence, comparison, addition, multiplication and division). The concept of 

fractions is also linked to other mathematical concepts such as geometry, number-lines, 

and whole number multiplication and division.  

 

Table 1 

Different Fraction Interpretations for the fraction 
3

4
 

Interpretations Example 

Part/whole 3 out of 4 equal parts of a whole or set of objects or collection 

Measure 3

4
 means a distance of 3 ( 1

4
units) from 0 on the number line  

Operator 3

4
 of something, stretching or shrinking 

Quotient 3 divided by 4, 3
4

 is the amount each person receives 

Ratio 3 parts cement to 4 parts sand  

 

Fraction concepts can be explained by teachers and students using a combination of 

external representations such as written symbols, spoken language, concrete materials, 

pictures, and real world examples (Lesh et al., 1983).  
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Conceptual Understanding of Fraction Equivalence 

Fraction equivalence is one concept within the extensive fraction schemata. 

Equivalence implies similar worth. Thus two common fractions are considered equivalent 

when they have the same value (BOS NSW, 2002; Skemp, 1986). A fraction represents a 

number with an infinite number of names. Listing some of these names makes it apparent 

that each individual fraction is part of an “equivalence set”. For example, the equivalence 

set for the fraction
2

1 can be represented as ,...],,,[
8
4

6

3

4
2

2
1 . Implicit in the concept of 

equivalence is the knowledge that each fraction in the set is interchangeable with the 

others.  

Conceptual understanding of equivalent fractions involves more than remembering a 

fact or applying a procedure. It is based on an intricate relationship between declarative 

and procedural knowledge; between fraction interpretation and representation. Students 

should able to: (a) make connections between fraction models by understanding the 

sameness and distinctness within these interpretations (Lesh et al., 1983; NRC, 2001); (b) 

make connections between the different representations (Lesh et al., 1983), and (c) show 

that a fraction represents a number with many names. The present study examines a small 

portion of the large body of knowledge associated with fractions. 

Figure 1 depicts the scope of the questions used to identify students’ conceptual 

understanding of equivalent fractions. At the lowest level, knowledge is declarative and 

procedural, loosely linked to specific examples of equivalent fractions (NRC, 2001) and 

not generalised across representations or interpretations. As students develop 

understanding, their knowledge becomes generalised and applied more broadly. 

Symbolic

Pictorial

Measure

Numberline

Part /Whole

Area

Symbolic

Pictorial

Procedural

Declarative

Procedural

Declarative

Procedural

Declarative

Procedural

Declarative

Conceptual

Understanding

Of
Equivalence Sets

(one whole, three quarters )

 

Figure 1. Model used to develop equivalent fraction questions (Adapted from Lamon (2001, p.151)). 

In this study, students were presented with tasks that aimed to elucidate their level of 

thinking. The demands of the tasks were restricted to identifying symbolic and pictorial 

representations and representing fractions using part/whole area and measure models. They 

incorporated “skill” questions that required the recall of a practised routine or procedure, 

and “conceptual” questions that required students to apply their knowledge and explain 

their actions (Shannon, 1999).  

Tasks that incorporate pictorial representations with visual distractors provide one 

method of measuring students’ conceptual understanding of equivalent fractions. Such 

tasks have been found to highlight the unstable nature of a student’s fraction knowledge 
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(Ni, 2001; Niemi, 1996). Pictorial representations of part/whole area and measure models 

can be described as “simple representations” when the total number of equal parts in the 

shape matches the fraction denominator. They allow students to count the parts (see Figure 

2a). The shaded part is associated with the numerator and the entire shape is associated 

with the denominator. Equivalent pictorial representations are visually challenging. They 

occur when the number of equal parts of the whole is a multiplicative factor less or greater 

than the denominator (Niemi, 1996), as shown in Figures 2b and 2c. The areas of the 

whole and shaded part never change, but the number of equal parts into which the whole is 

divided can alter dramatically. Thus different fraction names can be offered for the shaded 

area and an equivalence set identified. Simple and equivalent representations for a measure 

model appear in Figure 3.  

 

 

 

 

 
Figure 2. Part/whole area model simple and equivalent representations for two quarters. 

 
 

(a) simple 

   

(b) equivalent - 8 equal parts 

Figure 3. Measure model simple and equivalent representations for two quarters. 

Equivalent fraction tasks using symbolic notation (see Figure 4) are more cognitively 

demanding as up to four dimensions need to be simultaneously co-ordinated: the original 

two-dimensional fraction, 3

8
 and its equivalent, 

32

12  (English & Halford, 1995). Questions 

that incorporate the interpretation and manipulation of symbolic notation are ideal for 

identifying the levels of students’ conceptual understanding of equivalent fractions. 

Evaluation of their responses provides an insight into the students’ thought patterns, 

conceptual understanding and procedural knowledge. Teachers who understand how 

students develop this knowledge, and are able to help them to see the links between various 

representations are providing the most effective fraction programs for students.

(a) 3

8
=
32

 (b) 3

8
= 12  (c) 3

8
=  Answer for a and b: 3

8
= 12

32

Figure 4. Typical equivalent fraction question and answer employing symbolic representations only. 

 

The purpose of this study was to evaluate students’ understanding of equivalent 

fractions through their responses to questions that incorporated symbolic and pictorial 

representations, and required them to identify measure and part/whole interpretations. 

Firstly, the types of knowledge used by students to answer these questions were 

investigated. Secondly, responses by students of varying general mathematical 

achievement were compared to examine the differences evident in their developing 

mastery of equivalent fractions.

                

               

(a) simple   (b) equivalent - 2 equal parts (c) 8 equal parts 
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Methodology 

Participants 

Two hundred and thirteen students from Years 3 to 5 from three Sydney primary 

schools participated in the study. Their details appear in Table 2. 

Table 2 

Participant Details 

Age (years) GenderGrade

level 

Sample

size (n) Range Avg. % Boys % Girls 

3 64 8.15-10.21 8.84 48.4 51.6

4 80 7.97-11.08 9.84 50.0 50.0 

5 69 10.02-12.75 10.81 37.7 62.3 

Instruments 

The Progressive Achievement Tests in Mathematics (PATMaths) was used to measure 

students’ general mathematics achievement (Australian Council for Educational Research 

[ACER], 2005). As recommended by ACER, different tests were used for grades 3 to 5.  

All tests were norm referenced and scores calibrated on a common scale. The questions for 

the Assessment of Fraction Understanding (AFU) were derived and adapted from various 

assessment instruments including the Trends in Mathematics and Science Study, the North 

Carolina Testing Program, the California Standards Test and the Success in Numeracy 

Education program (Catholic Education Office, 2005). The questions analysed in this 

paper related to the fraction “one whole” and “three quarters” and appear in Table 3, along 

with the representation mapping used for each question.  

Table 3 

Questions Analysed 

Fraction Symbolic to Pictorial Symbolic to Symbolic  

One

whole 
14. Shade in 

2

2  of the shape below? 

 

Can you think of another name for the fraction 

shaded? 

29. Circle the fractions that are equal to 1?

8

8                                
1
1

100  

 

1

1  

9

10   

4

4  

1
1

8                

7

8           

10

9                

9

8   
How did you work this out? 

Three 

quarters 

13. In the figure, how many small squares need 

to be shaded so that 
4

3  of the small squares are 

shaded? 

 

 

28 (b). 

 

6

8
=
......

 

 

Pictorial to Symbolic  

Three 

quarters

18. What fraction is best represented by point P on this number line? _____ 

 

What other fraction does it represent? 

 at frff action is best represented by point P on thtt is n

thtt er frff action does it represent?
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The questions were linked to the Mathematics K-6 Syllabus, as shown in Table 4.  

Stage 2 (NS2.4) knowledge and skills are generally taught in years 3 to 4, whereas Stage 3 

(NS3.4) skills are taught in years 5 to 6. All questions were open-ended, which allowed for 

students’ understanding to be examined more effectively. Part/whole area questions used 

an equivalent area representation, and the measure question used a simple number-line 

representation. Questions 29 and 14 examined the concept of one whole, whereas questions 

13, 28b, and 18 examined three quarters. Question 18 further illuminated the sophistication 

of the students’ connections between measure and part/whole interpretations. 

Table 4 

Mathematics K-6 Syllabus Reference (BOS NSW, 2002) 

Question Syllabus Reference (knowledge and skills) 

14, 29 NS2.4 (1) 
Renaming 

2

2
,
4

4
,
8

8  as 1 

13 NS2.4 (2) Finding equivalence between halves, quarters and eighths using concrete materials 

and diagrams, by re-dividing the unit 

28(b) NS3.4 (2) Developing a mental strategy for finding equivalent fractions, e.g., multiply/divide 

the numerator and the denominator by the same number  

18 NS2.4 (2) Placing halves, quarters and eighths on a number line between 0 and 1 to further 

develop equivalence 

Procedure 

All participants were tested during term three, 2006, over two consecutive days. The 

PATMaths test was administered on the first day and the AFU the following day. Both 

tests were administered following standardised protocols. Each pencil and paper test was 

of 45 minutes duration. Calculators were not permitted. Participants were asked to show all 

working for the AFU in their test booklet. 

Results 

Most Australian states and territories identify students “at risk” as the lowest achieving 

20 percent of students (Doig, McCrae, & Rowe, 2003). Participants with limited general 

mathematics achievement (GMA) are identified as those students who score below the 20th 

percentile on their particular PATMaths test, when compared with the norming data 

(ACER, 2006). Students scoring in the middle 60% are considered to be developing 

mathematical knowledge at an appropriate level, whilst the upper most 20% are identified 

as more competent. Participants were categorised into achievement levels (see Table 5).  

Table 5 

Student Achievement 

 General Mathematics Achievement (GMA)   

 Limited (N = 28) Avg. (N = 152) High (N = 33) Total (N = 213) 

Grade n % of Grade n % of Grade n % of Grade n % of Total 

3 6  9.4 45 70.3 13 20.3 64 30.0 

4 8 10.0 61 76.3 11 13.8 80 37.6 

5 14 20.3 46 66.7 9 13.0 69 32.4 

Total 28 13.1 152 71.4 33 15.5 213 100.0 
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A Rasch analysis was conducted to determine the difficulty of each question used in 

the AFU. The relative difficulty of each item and other associated Rasch statistics are 

shown in Table 6. The ‘fit residual’ statistic confirms whether the item is over or under-

discriminating in comparison to the theoretical dichotomous Rasch model (which has an 

acceptable fit statistic between -2 and 2) (Bond & Fox, 2001). The chi-square probability 

statistic verifies whether there is a statistically significant difference between the 

theoretical and observed item discrimination for each question (RUMM Laboratory, 2004). 

There were no significant deviations from the theoretical Rasch model for any of the five 

questions analysed in this study.  

Table 6 

Item Difficulty 

Question  Difficulty SE Fit Residual Chi-square p 

29. Circle fractions equal to 1 -0.691 0.150 -1.851 9.359 0.052 

14. Shade in 2/2 of the shape 0.061 0.141 0.533 5.484 0.241 

13. Shading 3/4 of small squares 0.211 0.141 -1.145 6.917 0.140 

28 (b) 6/8 =  0.611 0.145 -0.564 2.729 0.604 

18. Fraction represented on a number-line 1.821 0.157 -0.291 4.875 0.300 

 

The easiest questions (i.e., 29 and 14) required students to identify one whole. Students 

were more able to identify three quarters of an equivalent area model than 1) to determine 

an equivalent fraction for three quarters using only symbolic representation or 2) to 

identify a fraction using a measure model. 

Further question analysis identified the knowledge structures participants employed to 

solve these equivalent fraction problems. Commencing with the easiest question (29), 

Table 7 shows the percentages of students who answered the question correctly and 

incorrectly. Eighty percent of students who answered the question justified their response 

by stating that the top number and bottom number were the same. Participants explained 

their thinking by using procedural knowledge, which does not exclude conceptual 

understanding. The participants who provided an incorrect response provided no 

observable pattern of reasoning. From the incorrect responses given, many students 

selected fractions that contained the number 1 as part of the fraction (either 1/1 or mixed 

numerals containing the whole number 1).  

Table 7 

Responses to Question 29: Circle the Fractions that are Equal to 1 (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

Answer selected n % n % 

CORRECT:1/1, 4/4 and 8/8 selected 10 35.7 25 75.8 

1/1 only 5 17.9 3 9.1 

Two or more of the following selected: 1/1, 1 1/8, 1 1/00 7 25.0 1 3.0 

Other 4 14.3 2 6.0 

No response 2 7.1 2 6.0 

 

The application of students’ knowledge in linking symbolic to pictorial representations 

of “one whole” was tested in question 14 using an equivalent pictorial representation. 

Responses are tabulated in Table 8. Nearly all the participants who were able to answer the 

question correctly were also able to give another name for the fraction shaded. Only 10.7% 

(n = 3) of participants with limited GMA and 54.5% (n = 18) of participants with high 
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GMA were able to answer questions 29 and 14 correctly. Thus, these participants were 

able to show greater conceptual understanding as they applied their symbolic 

understanding of one whole to an equivalent pictorial representation. For those participants 

who answered the question incorrectly (shading 2 small squares), approximately half wrote 

“1/2” for the fraction shaded. 

Table 8 

Responses to Question 14: Shade in 2/2 of the Shape (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

Number of small squares shaded n % n % 

CORRECT: 4 5 17.9 22 66.7 

Participants are able think of another name for the fraction shaded 4 14.3 20 60.1 

2 22 78.6 10 30.3 

Participants gave response 1/2 for fraction shaded 9 32.1 5 15.2 

Other or Missing 1 3.6 1 3.0 

 

Although 3/4 is a commonly presented fraction, low GMA participants had difficulty 

representing the fraction using an equivalent part/whole area diagram. Responses from all 

participants for question 13 are shown in Table 9. Their most common incorrect response 

was to shade three small squares. Six of these participants also shaded 2 squares in 

question 14, suggesting they used the value of the numerator in both questions to 

determine the number of squares to shade.  

Table 9 

Responses to Question 13: How Many Small Squares Need to be Shaded (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

Number of small squared shaded n % n % 

CORRECT: 6 4 14.3 23 69.7 

2 5 17.9 1 3.0 

3 12 42.9 8 24.2 

1, 4, 5 4 14.3 0 0.0 

Missing 2 7.1 1 3.0 

 

Question 28b presented a symbolic to symbolic equivalent fraction question and 

participant responses are shown in Table 10. This question can be solved procedurally by 

multiplying the top and bottom by the same number. Some participants gave either the 

response 4/6 or 8/10, indicating that they may have separated the fraction into two 

components, with the bottom number being two greater than the top one. An equivalent 

fraction was then constructed with a similar pattern. Three limited GMA students answered 

questions 13 and question 28b correctly. For the high GMA group, 14 participants 

answered questions 13 and 28b correctly. Only 2 limited GMA students answered all four 

questions 29, 14, 13, and 28 correctly compared to 11 from the high GMA group. 

The number of participants who were able to identify point P on the number line is 

shown in Table 11. Only 33.3% (n = 11) of the high GMA group answered the question 

correctly. Only seven of these participants were able to list another name for the fraction. 

These seven participants answered all three “3/4” questions and question 29 (identifying 

symbolic representations of one whole) correctly. Only four of these seven participants 

answered all five questions correctly. It was these four participants who showed the 
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greatest conceptual understanding of equivalent fractions, as they were not only able to 

link symbolic and pictorial representations but also offer another name for a specific 

fraction and apply their knowledge across different fraction representations consistently. 

No participants in the low GMA group were able to answer all questions correctly. They 

did not apply their knowledge consistently across representations and were unable to 

transfer their knowledge to the measure interpretation. 

Table 10 

Responses to Question 28b: 6/8 = __/__ (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

 n % n % 

CORRECT equivalent fraction given 7 25.0 18 54.5 

4/6 or 8/10 2 7.1 4 12.1 

Other  8 26.6 7 21.2 

Missing 11 39.3 4 12.1 

Table 11 

Responses to Question 18: Identify point P on the number line (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

 n % n % 

CORRECT: 6/8 1 3.6 8 24.2 

CORRECT: 3/4 1 3.6 3 9.1 

6/10  0 0.0 3 9.1 

6 3 10.7 2 6.1 

Other 15 53.6 9 27.2 

Missing 8 26.8 8 24.2 

Discussion 

Students’ conceptual understanding of equivalent fractions was examined in this study 

through their responses to mathematical problems that required them to make connections 

between equivalent pictorial and symbolic representations incorporating measure and 

part/whole area interpretations.  

Students demonstrated the use of procedural knowledge when answering equivalent 

fraction problems presented in symbolic form. In some instances, whole number reasoning 

was exhibited in the procedures they used. Many students were unable to represent a 

symbolic fraction using an equivalent area diagram. Students who successfully linked 

symbolic and pictorial part/whole area interpretations for one whole and three quarters 

showed their knowledge was more generalised and were more able to apply their 

understanding to pictorial representations using a number-line (measure interpretation). 

However, the difference between the students in the limited and the high general 

mathematics achievement groups seems to lie not in the errors they made as similar types 

of errors were observed. Rather, the depth of their procedural and declarative knowledge 

and the strength of their connections between procedures and concepts varied as shown in 

the percentage of questions answered correctly and the types of questions answered 

correctly.   

Conceptual understanding and procedural knowledge are delicately intertwined. The 

analysis of additional questions or the interview data may assist in clarifying students’ 
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level of conceptual understanding. It may also corroborate the findings of Siemon, Izard, 

Breed, and Virgona (2006) who demonstrated that students with developing fraction 

knowledge were able to perform simple fraction tasks, but were unable to explain or justify 

their thinking in writing.  
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